
3D Engine Design

for Virtual Globes

Patrick Cozzi and Kevin Ring

Editorial, Sales, and Customer Service Office

A K Peters, Ltd.
5 Commonwealth Road, Suite 2C
Natick, MA 01760
www.akpeters.com

Copyright 2011 by A K Peters, Ltd.

All rights reserved. No part of the material protected by this copyright
notice may be reproduced or utilized in any form, electronic or mechani-
cal, including photocopying, recording, or by any information storage and
retrieval system, without written permission from the copyright owner.

Library of Congress Cataloging-in-Publication Data

To be determined

Printed in the United States of America

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Contents

Foreword vii

Preface vii

1 Introduction 1

1.1 Rendering Challenges in Virtual Globes 1

1.2 Contents Overview . 5

1.3 OpenGlobe Architecture 8

1.4 Conventions . 10

I Fundamentals 11

2 Math Foundations 13

2.1 Virtual Globe Coordinate Systems 13

2.2 Ellipsoid Basics . 17

2.3 Coordinate Transformations 22

2.4 Curves on an Ellipsoid . 34

2.5 Resources . 39

3 Renderer Design 41

3.1 The Need for a Renderer 42

3.2 Bird’s-Eye View . 46

3.3 State Management . 50

3.4 Shaders . 63

3.5 Vertex Data . 84

3.6 Textures . 101

3.7 Framebuffers . 112

3.8 Putting It All Together: Rendering a Triangle 115

3.9 Resources . 119

vii

viii CONTENTS

4 Globe Rendering 121

4.1 Tessellation . 121

4.2 Shading . 133

4.3 GPU Ray Casting . 149

4.4 Resources . 154

II Precision 155

5 Vertex Transform Precision 157

5.1 Jittering Explained . 158

5.2 Rendering Relative to Center 164

5.3 Rendering Relative to Eye Using the CPU 169

5.4 Rendering Relative to Eye Using the GPU 171

5.5 Recommendations . 177

5.6 Resources . 180

6 Depth Buffer Precision 181

6.1 Causes of Depth Buffer Errors 181

6.2 Basic Solutions . 188

6.3 Complementary Depth Buffering 189

6.4 Logarithmic Depth Buffer 191

6.5 Rendering with Multiple Frustums 194

6.6 W-Buffer . 198

6.7 Algorithms Summary . 198

6.8 Resources . 199

III Vector Data 201

7 Vector Data and Polylines 203

7.1 Sources of Vector Data . 203

7.2 Combating Z-Fighting . 204

7.3 Polylines . 207

7.4 Resources . 219

8 Polygons 221

8.1 Render to Texture . 221

8.2 Tessellating Polygons . 222

8.3 Polygons on Terrain . 241

8.4 Resources . 250

CONTENTS ix

9 Billboards 251

9.1 Basic Rendering . 252

9.2 Minimizing Texture Switches 258

9.3 Origins and Offsets . 267

9.4 Rendering Text . 271

9.5 Resources . 273

10 Exploiting Parallelism in Resource Preparation 275

10.1 Parallelism Everywhere 275

10.2 Task-Level Parallelism in Virtual Globes 278

10.3 Architectures for Multithreading 280

10.4 Multithreading with OpenGL 292

10.5 Resources . 304

IV Terrain 305

11 Terrain Basics 307

11.1 Terrain Representations 308

11.2 Rendering Height Maps 313

11.3 Computing Normals . 335

11.4 Shading . 343

11.5 Resources . 363

12 Massive-Terrain Rendering 365

12.1 Level of Detail . 367

12.2 Preprocessing . 376

12.3 Out-of-Core Rendering . 381

12.4 Culling . 390

12.5 Resources . 400

13 Geometry Clipmapping 403

13.1 The Clipmap Pyramid . 406

13.2 Vertex Buffers . 408

13.3 Vertex and Fragment Shaders 411

13.4 Blending . 414

13.5 Clipmap Update . 417

13.6 Shading . 435

13.7 Geometry Clipmapping on a Globe 436

13.8 Resources . 443

x CONTENTS

14 Chunked LOD 445
14.1 Chunks . 447
14.2 Selection . 448
14.3 Cracks between Chunks 449
14.4 Switching . 450
14.5 Generation . 452
14.6 Shading . 459
14.7 Out-of-Core Rendering . 460
14.8 Chunked LOD on a Globe 462
14.9 Chunked LOD Compared to Geometry Clipmapping . . . 463
14.10 Resources . 465

A Implementing a Message Queue 467

Bibliography 477

Index 491

1
Introduction

Virtual globes are known for their ability to render massive real-world ter-
rain, imagery, and vector datasets. The servers providing data to virtual
globes such as Google Earth and NASA World Wind host datasets mea-
suring in the terabytes. In fact, in 2006, approximately 70 terabytes of
compressed imagery were stored in Bigtable to serve Google Earth and
Google Maps [24]. No doubt, that number is significantly higher today.

Obviously, implementing a 3D engine for virtual globes requires careful
management of these datasets. Storing the entire world in memory and
brute force rendering are certainly out of the question. Virtual globes,
though, face additional rendering challenges beyond massive data manage-
ment. This chapter presents these unique challenges and paves the way
forward.

1.1 Rendering Challenges in Virtual Globes

In a virtual globe, one moment the viewer may be viewing Earth from a
distance (see Figure 1.1(a)); the next moment, the viewer may zoom in to a
hilly valley (see Figure 1.1(b)) or to street level in a city (see Figure 1.1(c)).
All the while, real-world data appropriate for the given view are paged in
and precisely rendered.

The freedom of exploration and the ability to visualize incredible
amounts of data give virtual globes their appeal. These factors also lead
to a number of interesting and unique rendering challenges:

• Precision. Given the sheer size of Earth and the ability for users to
view the globe as a whole or zoom in to street level, virtual globes
require a large view distance and large world coordinates. Trying to
render a massive scene by näıvely using a very close near plane; very

1

2 1. Introduction

(a) (b)

(c)

Figure 1.1. Virtual globes allow viewing at varying scales: from (a) the entire
globe to (b) and (c) street level. (a) 2010 Tele Atlas; (b) 2010 Europa
Technologies, US Dept of State Geographer; (c) 2010 Google, US Census
Bureau, Image USDA Farm Service Agency. (Images taken using Google Earth.)

distant far plane; and large, single-precision, floating-point coordi-
nates leads to z-fighting artifacts and jittering, as shown in Figures 1.2
and 1.3. Both artifacts are even more noticeable as the viewer moves.
Strategies for eliminating these artifacts are presented in Part II.

• Accuracy. In addition to eliminating rendering artifacts caused by
precision errors, virtual globes should also model Earth accurately.
Assuming Earth is a perfect sphere allows for many simplifications,
but Earth is actually about 21 km longer at the equator than at
the poles. Failing to take this into account introduces errors when
positioning air and space assets. Chapter 2 describes the related
mathematics.

1.1. Rendering Challenges in Virtual Globes 3

(a) (b)

Figure 1.2. (a) Jitter artifacts caused by precision errors in large worlds. Insuffi-
cient precision in 32-bit floating-point numbers creates incorrect vertex positions.
(b) Without jittering. (Images courtesy of Brano Kemen, Outerra.)

• Curvature. The curvature of Earth, whether modeled with a sphere or
a more accurate representation, presents additional challenges com-
pared to many graphics applications where the world is extruded
from a plane (see Figure 1.4): lines in a planar world are curves on
Earth, oversampling can occur as latitude approaches 90◦ and −90◦,
a singularity exists at the poles, and special care is often needed to
handle the International Date Line. These concerns are addressed
throughout this book, including in our discussion of globe rendering
in Chapter 4, polygons in Chapter 8, and mapping geometry clipmap-
ping to a globe in Chapter 13.

(a) (b)

Figure 1.3. (a) Z-fighting and jittering artifacts caused by precision errors in large
worlds. In z-fighting, fragments from different objects map to the same depth
value, causing tearing artifacts. (b) Without z-fighting and jittering. (Images
courtesy of Aleksandar Dimitrijević, University of Nǐs.)

4 1. Introduction

(a) (b)

(c) (d)

(e) (f)

Figure 1.4. (a) Lines connecting surface points cut underneath a globe; instead,
(b) points should be connected with a curve. Likewise, (c) polygons composed of
triangles cut under a globe unless (d) curvature is taken into account. Mapping
flat-world algorithms, (e) like geometry clipmapping terrain, to a globe can lead
to (f) oversampling near the poles. (a) and (c) are shown without depth testing.
(b) and (d) use the depth-testing technique presented in Chapter 7 to avoid
z-fighting with the globe.

1.2. Contents Overview 5

• Massive datasets. Real-world data have significant storage require-
ments. Typical datasets will not fit into GPU memory, system mem-
ory, or a local hard disk. Instead, virtual globes rely on server-side
data that are paged in based on view parameters using a technique
called out-of-core rendering, which is discussed in the context of ter-
rain in Chapter 12 and throughout Part IV.

• Multithreading. In many applications, multithreading is considered
to be only a performance enhancement. In virtual globes, it is an
essential part of the 3D engine. As the viewer moves, virtual globes
are constantly paging in data and processing it for rendering. Doing
so in the rendering thread causes severe stalls, making the application
unusable. Instead, virtual globe resources are loaded and processed
in one or more separate threads, as discussed in Chapter 10.

• Few simplifying assumptions. Given their unrestrictive nature, vir-
tual globes cannot take advantage of many of the simplifying assump-
tions that other graphics applications can.

A viewer may zoom from a global view to a local view or vice versa
in an instant. This challenges techniques that rely on controlling
the viewer’s speed or viewable area. For example, flight simulators
know the plane’s top speed and first-person shooters know the player’s
maximum running speed. This knowledge can be used to prefetch
data from secondary storage. With the freedom of virtual globes,
these techniques become more difficult.

Using real-world data also makes procedural techniques less applica-
ble. The realism in virtual globes comes from higher-resolution data,
which generally cannot be synthesized at runtime. For example, pro-
cedurally generating terrains or clouds can still be done, but virtual
globe users are most often interested in real terrains and clouds.

This book address these rendering challenges and more.

1.2 Contents Overview

The remaining chapters are divided into four parts: fundamentals, preci-
sion, vector data, and terrain.

1.2.1 Fundamentals

The fundamentals part contains chapters on low-level virtual globe com-
ponents and basic globe rendering algorithms.

6 1. Introduction

• Chapter 2: Math Foundations. This chapter introduces useful math
for virtual globes, including ellipsoids, common virtual globe coordi-
nate systems, and conversions between coordinate systems.

• Chapter 3: Renderer Design. Many 3D engines, including virtual
globes, do not call rendering APIs such as OpenGL directly, and
instead use an abstraction layer. This chapter details the design
rationale behind the renderer in our example code.

• Chapter 4: Globe Rendering. This chapter presents several funda-
mental algorithms for tessellating and shading an ellipsoidal globe.

1.2.2 Precision

Given the massive scale of Earth, virtual globes are susceptible to rendering
artifacts caused by precision errors that many other 3D applications are
not. This part details the causes and solutions to these precision problems.

• Chapter 5: Vertex Transform Precision. The 32-bit precision on most
of today’s GPUs can cause objects in massive worlds to jitter, that
is, literally bounce around in a jerky manner as the viewer moves.
This chapter surveys several solutions to this problem.

• Chapter 6: Depth Buffer Precision. Since virtual globes call for a
close near plane and a distant far plane, extra care needs to be taken
to avoid z-fighting due to the nonlinear nature of the depth buffer.
This chapter presents a wide range of techniques for eliminating this
artifact.

1.2.3 Vector Data

Vector data, such as political boundaries and city locations, give virtual
globes much of their richness. This part presents algorithms for rendering
vector data and multithreading techniques to relieve the rendering thread
of preparing vector data, or resources in general.

• Chapter 7: Vector Data and Polylines. This chapter includes a brief
introduction to vector data and geometry-shader-based algorithms
for rendering polylines.

• Chapter 8: Polygons. This chapter presents algorithms for rendering
filled polygons on an ellipsoid using a traditional tessellation and
subdivision approach and rendering filled polygons on terrain using
shadow volumes.

1.2. Contents Overview 7

• Chapter 9: Billboards. Billboards are used in virtual globes to display
text and highlight places of interest. This chapter covers geometry-
shader-based billboards and texture atlas creation and usage.

• Chapter 10: Exploiting Parallelism in Resource Preparation. Given
the large datasets used by virtual globes, multithreading is a must.
This chapter reviews parallelism in computer architecture, presents
software architectures for multithreading in virtual globes, and de-
mystifies multithreading in OpenGL.

1.2.4 Terrain

At the heart of a virtual globe is a terrain engine capable of rendering mas-
sive terrains. This final part starts with terrain fundamentals, then moves
on to rendering real-world terrain datasets using level of detail (LOD) and
out-of-core techniques.

• Chapter 11: Terrain Basics. This chapter introduces height-map-
based terrain with a discussion of rendering algorithms, normal com-
putations, and shading, both texture-based and procedural.

• Chapter 12: Massive-Terrain Rendering. Rendering real-world ter-
rain accurately mapped to an ellipsoid requires the techniques dis-
cussed in this chapter, including LOD, culling, and out-of-core ren-
dering. The next two chapters build on this material with specific
LOD algorithms.

• Chapter 13: Geometry Clipmapping. Geometry clipmapping is an
LOD technique based on nested, regular grids. This chapter details
its implementation, as well as out-of-core and ellipsoid extensions.

• Chapter 14: Chunked LOD. Chunked LOD is a popular terrain LOD
technique that uses hierarchical levels of detail. This chapter dis-
cusses its implementation and extensions.

There is also an appendix on implementing a message queue for com-
municating between threads.

We’ve ordered the parts and chapters such that the book flows from
start to finish. You don’t have to read the chapters in order though; we
certainly didn’t write them in order. Just ensure you are familiar with
the terms and high level-concepts in Chapters 2 and 3, then jump to the
chapter that interests you most. The text contains cross-references so you
know where to go for more information.

There are Patrick Says and Kevin Says boxes throughout the text.
These are the voices of the individual authors and are used to tell a story,

8 1. Introduction

usually an implementation war story, or to inject an opinion without cloud-
ing the main text. We hope these lighten up the text and provide deeper
insight into our experiences.

The text also includes Question and Try This boxes that provide ques-
tions to think about and modifications or enhancements to make to the
example code.

1.3 OpenGlobe Architecture

A large amount of example code accompanies this book. These examples
were written from scratch, specifically for this book. In fact, just as much
effort went into the example code as went into the book you hold in your
hands. As such, treat the examples as an essential part of your learning—
take the time to run them and experiment. Tweaking code and observing
the result is time well spent.

Together, the examples form a solid foundation for a 3D engine designed
for virtual globes. As such, we’ve named the example code OpenGlobe and
provide it under the liberal MIT License. Use it as is in your commercial
products or select bits and pieces for your personal projects. Download it
from our website: http://www.virtualglobebook.com/.

The code is written in C# using OpenGL1 and GLSL. C#’s clean syn-
tax and semantics allow us to focus on the graphics algorithms without
getting bogged down in language minutiae. We’ve avoided lesser-known
C# language features, so if your background is in another object-oriented
language, you will have no problem following the examples. Likewise, we’ve
favored clean, concise, readable code over micro-optimizations.

Given that the OpenGL 3.3 core profile is used, we are taking a modern,
fully shader-based approach. In Chapter 3, we build an abstract renderer
implemented with OpenGL. Later chapters use this renderer, nicely tucking
away the OpenGL API details so we can focus on virtual globe and terrain
specifics.

OpenGlobe includes implementations for many of the presented algo-
rithms, making the codebase reasonably large. Using the conservative met-
ric of counting only the number of semicolons, it contains over 16,000 lines
of C# code in over 400 files, and over 1,800 lines of GLSL code in over 80
files. We strongly encourage you to build, run, and experiment with the
code. As such, we provide a brief overview of the engine’s organization to
help guide you.

OpenGlobe is organized into three assemblies:2 OpenGlobe.Core.dll,
OpenGlobe.Renderer.dll, and OpenGlobe.Scene.dll. As shown in Figure 1.5,

1OpenGL is accessed from C# using OpenTK: http://www.opentk.com/.
2Assembly is the .NET term for a compiled code library (i.e., an .exe or .dll file).

1.3. OpenGlobe Architecture 9

����

��������

�	���

�
���
����������

�����	�����

�
��
��
��
��

Figure 1.5. The stack of OpenGlobe assemblies.

these assemblies are layered such that Renderer depends on Core, and Scene
depends on Renderer and Core. All three assemblies depend on the .NET
system libraries, similar to how an application written in C depends on the
C standard library.

Each OpenGlobe assembly has types that build on its dependent as-
semblies:

• Core. The Core assembly exposes fundamental types such as vec-
tors, matrices, geographic positions, and the Ellipsoid class discussed
in Chapter 2. This assembly also contains geometric algorithms, in-
cluding the tessellation algorithms presented in Chapters 4 and 8,
and engine infrastructure, such as the message queue discussed in
Appendix A.

• Renderer. The Renderer assembly contains types that present an
abstraction for managing GPU resources and issuing draw calls. Its
design is discussed in depth in Chapter 3. Instead of calling OpenGL
directly, an application built using OpenGlobe uses types in this as-
sembly.

• Scene. The Scene assembly contains types that implement rendering
algorithms using the Renderer assembly. This includes algorithms for
globes (see Chapter 4), vector data (see Chapters 7–9), terrain shad-
ing (see Chapter 11), and geometry clipmapping (see Chapter 13).

Each assembly exposes types in a namespace corresponding to the as-
sembly’s filename. Therefore, there are three public namespaces: Open

Globe.Core, OpenGlobe.Renderer, and OpenGlobe.Scene.
An application may depend on one, two, or all three assemblies. For

example, a command line tool for geometric processing may depend just
on Core, an application that implements its own rendering algorithms may
depend on Core and Renderer, and an application that uses high-level
objects like globes and terrain would depend on all three assemblies.

10 1. Introduction

The example applications generally fall into the last category and usu-
ally consist of one main .cs file with a simple OnRenderFrame implementation
that clears the framebuffer and issues Render for a few objects created from
the Scene assembly.

OpenGlobe requires a video card supporting OpenGL 3.3, or equiva-
lently, Shader Model 4. These cards came out in 2006 and are now very
reasonably priced. This includes the NVIDIA GeForce 8 series or later and
ATI Radeon 2000 series or later GPUs. Make sure to upgrade to the most
recent drivers.

All examples compile and run on Windows and Linux. On Windows,
we recommend building with any version of Visual C# 2010, including
the free Express Edition.3 On Linux, we recommend MonoDevelop.4 We
have tested on Windows XP, Vista, and 7, as well as Ubuntu 10.04 and
10.10 with Mono 2.4.4 and 2.6.7, respectively. At the time of this writ-
ing, OpenGL 3.3 drivers were not available on OS X. Please check our
website for the most up-to-date list of supported platforms and integrated
development environments (IDEs).

To build and run, simply open Source\OpenGlobe.sln in your .NET de-
velopment environment, build the entire solution, then select an example
to run.

We are committed to filling these pages with descriptive text, figures,
and tables, not verbose code listing upon listing. Therefore, we’ve tried to
provide relevant, concise code listings that supplement the core content. To
keep listings concise, some error checking may be omitted, and #version

330 is always omitted in GLSL code. The code on our website includes full
error checking and #version directives.

1.4 Conventions

This book uses a few conventions. Scalars and points are lowercase and
italicized (e.g., s and p), vectors are bold (e.g., v), normalized vectors
also have a hat over them (e.g., n̂), and matrices are uppercase and bold
(e.g., M).

Unless otherwise noted, units in Cartesian coordinates are in meters (m).
In text, angles, such as longitude and latitude, are in degrees (◦). In code
examples, angles are in radians because C# and GLSL functions expect
radians.

3http://www.microsoft.com/express/Windows/
4http://monodevelop.com/

3
Renderer Design

Some graphics applications start off life with OpenGL or Direct3D calls
sprinkled throughout. For small projects, this is manageable, but as projects
grow in size, developers start asking, How can we cleanly manage OpenGL
state?; How can we make sure everyone is using OpenGL best practices?;
or even, How do we go about supporting both OpenGL and Direct3D?

The first step to answering these questions is abstraction—more specif-
ically, abstracting the underlying rendering API such as OpenGL or Di-
rect3D using interfaces that make most of the application’s code API-
agnostic. We call such interfaces and their implementation a renderer.
This chapter describes the design behind the renderer in OpenGlobe. First,
we pragmatically consider the motivation for a renderer, then we look at
the major components of our renderer: state management, shaders, vertex
data, textures, and framebuffers. Finally, we look at a simple example that
renders a triangle using our renderer.

If you have experience using a renderer, you may just want to skim this
chapter and move on to the meat of virtual globe rendering. Examples in
later chapters build on our renderer, so some familiarity with it is required.

This chapter is not a tutorial on OpenGL or Direct3D, so you need
some background in one API. Nor is this a description of how to wrap
every OpenGL call in an object-oriented wrapper. We are doing much
more than wrapping functions; we are raising the level of abstraction.

Our renderer contains quite a bit of code. To keep the discussion fo-
cused, we only include the most important and relevant code snippets in
these pages. Refer to the code in the OpenGlobe.Renderer project for the
full implementation. In this chapter, we are focused on the organization of
the public interfaces and the design trade-offs that went into them; we are
not concerned with minute implementation details.

Throughout this chapter, when we refer to GL, we mean OpenGL 3.3
core profile specifically. Likewise, when we refer to D3D, we mean Direct3D

41

42 3. Renderer Design

11 specifically. Also, we define client code as code that calls the renderer, for
example, application code that uses the renderer to issue draw commands.

Finally, software design is often subjective, and there is rarely a single
best solution. We want you to view our design as something that has
worked well for us in virtual globes, but as only one of a myriad approaches
to renderer design.

3.1 The Need for a Renderer

Given that APIs such as OpenGL and Direct3D are already an abstraction,
it is natural to ask, why build a renderer layer in our engine at all? Aren’t
these APIs sufficiently high level enough to use directly throughout our
engine?

Many small projects do scatter API calls throughout their code, but as
projects get larger, it is important that they properly abstract the under-
lying API for many reasons:

• Ease of development. Using a renderer is almost always easier and
more concise than calling the underlying API directly. For example,
in GL, the process of compiling and linking a shader and retrieving
its uniforms can be simplified to a single constructor call on a shader
program abstraction.

Since most engines are written in object-oriented languages, a ren-
derer allows us to present the procedural GL API using object-
oriented constructs. For example, constructors invoke glCreate or
glGen , and destructors invoke glDelete , allowing the C# garbage
collector to handle resource lifetime management, freeing client code
from having to explicitly delete renderer resources.1

Besides conciseness and object orientation, a renderer can simplify
development by minimizing or completely eliminating error-prone
global states, such as the depth and stencil tests. A renderer can
group these states into a coarse-grained render state, which is pro-
vided per draw call, eliminating the need for global state.

When using Direct3D 9, a renderer can also hide the details of han-
dling a “lost device,” where the GPU resources are lost due to a user
changing the window to or from full screen, a laptop’s cover open-
ing/closing, etc. The renderer implementation can shadow a copy of

1In C++, similar lifetime management can be achieved with smart pointers. Our
renderer abstractions implement IDisposable, which gives client code the option to
explicitly free an object’s resources in a deterministic manner instead of relying on the
garbage collector.

3.1. The Need for a Renderer 43

GPU resources in system memory, so it can restore them in response
to a lost device, without any interaction from client code.

• Portability. A renderer greatly reduces, but does not eliminate, the
burden of supporting multiple APIs. For example, an engine may
want to use Direct3D on Windows, OpenGL on Linux, OpenGL ES
on mobile devices,2 and LibGCM on PlayStation 3. To support differ-
ent APIs on different platforms, a different renderer implementation
can be swapped in, while the majority of the engine code remains
unchanged. Some renderer implementations, such as a GL renderer
and GL ES renderer or a GL 3.x renderer and GL 4.x renderer, may
even share a good bit of code.

A renderer also makes it easier to migrate to new versions of an
API or new GL extensions. For example, when all GL calls are iso-
lated, it is generally straightforward to replace global-state selectors
with direct-state access (EXT direct state access [91]). Likewise, the
renderer can decide if an extension is available or not and take ap-
propriate action. Supporting some new features or extension requires
exposing new or different public interfaces; for example, consider how
one would migrate from GL uniforms to uniform buffers.

• Flexibility. A renderer allows a great deal of flexibility since a ren-
derer’s implementation can be changed largely independent of client
code. For example, if it is more efficient to use GL display lists3 than
vertex buffer objects (VBOs) on certain hardware, that optimization
can be made in a single location. Likewise, if a bug is found that was
caused by a misunderstanding of a GL call or by a driver bug, the fix
can be made in one location, usually without impacting client code.

A renderer helps new code plug into an engine. Without a renderer, a
call to a virtual method may leave GL in an unknown state. The im-
plementor of such a method may not even work for the same company
that developed the engine and may not be aware of the GL conven-
tions used. This problem can be avoided by passing a renderer to the
method, which is used for all rendering activities. A renderer enables
the flexibility of engine “plug-ins” that are as seamless as core engine
code.

• Robustness. A renderer can improve an engine’s robustness by pro-
viding statistics and debugging aids. In particular, it is easy to count

2With ARB ES2 compatibility, OpenGL 3.x is now a superset of OpenGL ES 2.0 [19].
This simplifies porting and sharing code between desktop OpenGL and OpenGL ES.

3Display lists were deprecated in OpenGL 3, although they are still available through
the compatibility profile.

44 3. Renderer Design

the number of draw calls and triangles drawn per frame when GL
commands are isolated in a renderer. It can also be worthwhile to
have an option to log underlying GL calls for later debugging. Like-
wise, a renderer can easily save the contents of the framebuffer and
textures, or show the GL state at any point in time. When run in
debug mode, each GL call in the renderer can be followed by a call
to glGetError to get immediate feedback on errors.4

Many of these debugging aids are also available through third-party
tools, such as BuGLe,5 GLIntercept,6 and gDEBugger.7 These tools
track GL calls to provide debugging and performance information,
similar to what can be done in a renderer.

• Performance. At first glance, it may seem that a renderer layer can
hurt performance. It does add a lot of virtual methods calls. However,
considering the amount of work the driver is likely to do, virtual call
overhead is almost never a concern. If it were, virtual calls aren’t
even required to implement a renderer unless the engine supports
changing rendering APIs at runtime, an unlikely requirement. There-
fore, a renderer can be implemented with plain or inline methods if
desired.

A renderer can actually help performance by allowing optimizations
to be made in a single location. Client code doesn’t need to be aware
of GL best practices; only the renderer implementation does. The
renderer can shadow GL state to eliminate redundant state changes
and avoid expensive calls to glGet . Depending on the level of ab-
straction chosen for the renderer, it can also optimize vertex and index
buffers for the GPU’s caches and select optimal vertex formats with
proper alignment for the target hardware. Renderer abstractions can
also make it easier to sort by state, a commonly used optimization.

For engines written in a managed language like Java or C#, such as
OpenGlobe, a renderer can improve performance by minimizing the
managed-to-native-code round trip overhead. Instead of calling into
native GL code for every fine-grained call, such as changing a uniform
or a single state, a single coarse-grained call can pass a large amount
of state to a native C++ component that does several GL calls.

• Additional functionality. A renderer layer is the ideal place to add
functionality that isn’t in the underlying API. For example, Sec-

4If ARB debug output is supported, calls to glGetError can be replaced with a
callback function [93].

5http://sourceforge.net/projects/bugle/
6http://glintercept.nutty.org/
7http://www.gremedy.com/

3.1. The Need for a Renderer 45

tion 3.4.1 introduces additional built-in GLSL constants that are not
part of the GLSL language, and Section 3.4.5 introduces GLSL uni-
forms that are not built into GLSL but are still set automatically at
draw time by the renderer. A renderer doesn’t just wrap the under-
lying API; it raises the level of abstraction and provides additional
functionality.

Even with all the benefits of a renderer, there is an important pitfall to
watch for:

• A false sense of portability. Although a renderer eases supporting
multiple APIs, it does not completely eliminate the pain. David
Eberly explains his experience with Wild Magic: “After years of
maintaining an abstract rendering API that hides DirectX, OpenGL,
and software rendering, the conclusion is that each underlying API
suffers to some extent from the abstraction” [45]. No renderer is
a “one size fits all” solution. We freely admit that the renderer de-
scribed in this chapter is biased to OpenGL as we’ve not implemented
it with Direct3D yet.

One prominent concern is that having both GL and D3D implemen-
tations of the renderer requires us to maintain two versions of all
shaders: a GLSL version for the GL renderer and an HLSL version
for the D3D renderer. Given that shader languages are so similar, it is
possible to use a tool to convert between languages, even at runtime.
For example, HLSL2GLSL,8 a tool from AMD, converts D3D9 HLSL
shaders to GLSL. A modified version of this tool, HLSL2GLSLFork,9

maintained by Aras Pranckevičius, is used in Unity 3.0. The Google
ANGLE10 project translates in the opposite direction, from GLSL to
D3D9 HLSL.

To avoid conversions, shaders can be written in NVIDIA’s Cg, which
supports both GL and D3D. A downside is that the Cg runtime is
not available for mobile platforms at the time of this writing.

Ideally, using a renderer would avoid the need for multiple code paths
in client code. Unfortunately, this is not always possible. In particu-
lar, if different generations of hardware are supported with different
renderers, client code may also need multiple code paths. For exam-
ple, consider rendering to a cube map. If a renderer is implemented
using GL 3, geometry shaders will be available, so the cube map can
be rendered in a single pass. If the renderer is implemented with

8http://sourceforge.net/projects/hlsl2glsl/
9http://code.google.com/p/hlsl2glslfork/

10http://code.google.com/p/angleproject/

46 3. Renderer Design

an older GL version, each cube-map face needs to be rendered in a
separate pass.

A renderer is such an important piece of an engine that most game
engines include a renderer of some sort, as do applications like Google
Earth. It is fair to ask, if a renderer is so important, why does everyone
roll their own? Why isn’t there one renderer that is in widespread use?
Because different engines prefer different renderer designs. Some engines
want low-level, nearly one-to-one mappings between renderer calls and GL
calls, while other engines want very high-level abstractions, such as effects.
A renderer’s performance and features tend to be tuned for the application
it is designed for.

'

&

$

%

When writing an engine, consider using a renderer from the start. In my
experience, taking an existing engine with GL calls scattered throughout
and refactoring it to use a renderer is a difficult and error-prone endeavor.
When we started on Insight3D, one of my first tasks was to replace many
of the GL calls in the existing codebase we were leveraging with calls to
a new renderer. Even with all the debug code I included to validate GL
state, I injected my fair share of bugs.

Although developing software by starting with solid foundations and
building on top is much easier than retrofitting a large codebase later,
do not fall into the trap of doing architecture for architecture’s sake. A
renderer’s design should be driven by actual use cases.

Patrick Says

3.2 Bird’s-Eye View

A renderer is used to create and manipulate GPU resources and issue ren-
dering commands. Figure 3.1 shows our renderer’s major components. A
small amount of render state configures the fixed-function components of
the pipeline for rendering. Given that we are using a fully shader-based de-
sign, there isn’t much render state, just things like depth and stencil testing.
The render state doesn’t include legacy fixed-function states that can be
implemented in shaders like per-vertex lighting and texture environments.

Shader programs describe the vertex, geometry, and fragment shaders
used to execute draw calls. Our renderer also includes types for communi-
cating with shaders using vertex attributes and uniforms.

A vertex array is a lightweight container object that describes vertex
attributes used for drawing. It receives data for these attributes through

4.3. GPU Ray Casting 149

'

&

$

%

Run the night-lights example with a frame-rate utility. Note the frame
rate when viewing just the daytime side of the globe and just the night-
time side. Why is the frame rate higher for the nighttime side? Because
the night-lights texture is a lower resolution than the daytime texture and
does not require any lighting computations. This shows using dynamic
branching to improve performance.

Try This

Virtual globe applications use real-world data like this night-light tex-
ture derived from satellite imagery. On the other hand, video games gener-
ally focus on creating a wide array of convincing artificial data using very
little memory. For example, EVE Online takes an interesting approach to
rendering night lights for their planets [109]. Instead of relying on a night-
light texture whose texels are directly looked up, a texture atlas of night
lights is used. The spherically mapped texture coordinates are used to look
up surrogate texture coordinates, which map into the texture atlas. This
allows a lot of variation from a single texture atlas because sections can be
rotated and mirrored.

Rendering night lights is one of many uses for multitexturing in globe
rendering. Other uses include cloud textures and gloss maps to show specu-
lar highlights on bodies of waters [57,147]. Before the multitexturing hard-
ware was available, effects like these required multiple rendering passes.
STK, being one of the first products to implement night lights, uses a
multiple-pass approach.

4.3 GPU Ray Casting

GPUs are built to rasterize triangles at very rapid rates. The purpose of
ellipsoid-tessellation algorithms is to create triangles that approximate the
shape of a globe. These triangles are fed to the GPU, which rapidly ras-
terizes them into shaded pixels, creating an interactive visualization of the
globe. This process is very fast because it is embarrassingly parallel; indi-
vidual triangles and fragments are processed independently, in a massively
parallel fashion. Since tessellation is required, rendering a globe this way
is not without its flaws:

• No single tessellation is perfect; each has different strengths and weak-
nesses.

• Under-tessellation leads to a coarse triangle mesh that does not ap-
proximate the surface well, and over-tessellation creates too many

150 4. Globe Rendering

triangles, negatively affecting performance and memory usage. View-
dependent level-of-detail algorithms are required for most applica-
tions to strike a balance.

• Although GPUs exploit the parallelism of rasterization, memories
are not keeping pace with the increasing computation power, so a
large number of triangles can negatively impact performance. This is
especially true of some level-of-detail algorithms where new meshes
are frequently sent over the system bus.

Ray tracing is an alternative to rasterization. Rasterization starts with
triangles and ends with pixels. Ray tracing takes the opposite approach:
it starts with pixels and asks what triangle(s), or objects in general, con-
tribute to the color of this pixel. For perspective views, a ray is cast from
the eye through each pixel into the scene. In the simplest case, called ray

casting, the first object intersecting each ray is found, and lighting compu-
tations are performed to produce the final image.

A strength of ray casting is that objects do not need to be tessellated
into triangles for rendering. If we can figure out how to intersect a ray with
an object, then we can render it. Therefore, no tessellation is required to
render a globe represented by an ellipsoid because there is a well-known
equation for intersecting a ray with an ellipsoid’s implicit surface. The
benefits of ray casting a globe include the following:

• The ellipsoid is automatically rendered with an infinite level of detail.
For example, as the viewer zooms in, the underlying triangle mesh
does not become apparent because there is no triangle mesh; inter-
secting a ray with an ellipsoid produces an infinitely smooth surface.

• Since there are no triangles, there is no concern about creating thin
triangles, triangles crossing the poles, or triangles crossing the IDL.
Many of the weaknesses of tessellation algorithms go away.

• Significantly less memory is required since a triangle mesh is not
stored or sent across the system bus. This is particularly important
in a world where size is speed.

Since current GPUs are built for rasterization, you may wonder how
to efficiently ray cast a globe. In a näıve CPU implementation, a nested
for loop iterates over each pixel in the scene and performs a ray/ellip-
soid intersection. Like rasterization, ray casting is embarrassingly parallel.
Therefore, a wide array of optimizations are possible on today’s CPUs, in-
cluding casting each ray in a separate thread and utilizing single instruction
multiple data (SIMD) instructions. Even with these optimizations, CPUs

4.3. GPU Ray Casting 151

(a) (b) (c)

Figure 4.17. In GPU ray casting, (a) a box is rendered to (b) invoke a ray-casting
fragment shader that finds the ellipsoid’s visible surface. When an intersection
is found, (c) the geodetic surface normal is used for shading.

do not support the massive parallelism of GPUs. Since GPUs are built for
rasterization, the question is how do we use them for efficient ray casting?

Fragment shaders provide the perfect vehicle for ray casting on the
GPU. Instead of tessellating an ellipsoid, create geometry for a bounding
box around the ellipsoid. Then, render this box using normal rasterization
and cast a ray from the eye to each fragment created by the box. If the ray
intersects the inscribed ellipsoid, shade the fragment; otherwise, discard it.

The box is rendered with front-face culling, as shown in Figure 4.17(a).
Front-facing culling is used instead of back-face culling so the globe still
appears when the viewer is inside the box.

This is the only geometry that needs to be processed to render the
ellipsoid, a constant vertex load of 12 triangles. With front-face culling,
fragments for six of the triangles are processed for most views. The re-
sult is that a fragment shader is run for each fragment we want to cast
a ray through. Since the fragment shader can access the camera’s world-
space position through a uniform, and the vertex shader can pass the ver-
tex’s interpolated world-space position to the fragment shader, a ray can
be constructed from the eye through each fragment’s position.4 The ray
simply has an origin of og_cameraEye and a direction of normalize(world

Position − og_cameraEye).
The fragment shader also needs access to the ellipsoid’s center and radii.

Since it is assumed that the ellipsoid is centered at the origin, the fragment
shader just needs a uniform for the ellipsoid’s radii. In practice, intersecting
a ray with an ellipsoid requires 1

radii2
, so that should be precomputed once

on the CPU and passed to the fragment shader as a uniform. Given the

4In this case, a ray is cast in world coordinates with the ellipsoid’s center at the
origin. It is also common to perform ray casting in eye coordinates, where the ray’s
origin is the coordinate system’s origin. What really matters is that the ray and object
are in the same coordinate system.

152 4. Globe Rendering

ray and ellipsoid information, Listing 4.16 shows a fragment shader that
colors fragments green if a ray through the fragment intersects the ellipsoid
or red if the ray does not intersect, as shown in Figure 4.17(b).

This shader has two shortcomings. First, it does not do any actual
shading. Fortunately, given the position and surface normal of the ray in-
tersection, shading can utilize the same techniques used throughout this
chapter, namely LightIntensity() and ComputeTextureCoordinates(). List-
ing 4.17 adds shading by computing the position of the intersection along
the ray using i.Time and shading as usual. If the ray does not intersect
the ellipsoid, the fragment is discarded. Unfortunately, using discard has
the adverse effect of disabling GPU depth buffer optimizations, including
fine-grained early-z and coarse-grained z-cull, as discussed in Section 12.4.5.

in vec3 worldPosition ;
out vec3 fragmentColor ;
uniform vec3 og_cameraEye ;
uniform vec3 u_globeOneOverRadiiSquared ;

s t r u c t Intersection

{
bool Intersects ;
f l o a t Time ; // Time o f i n t e r s e c t i o n along ray

} ;

Intersection RayIntersectEllipsoid (vec3 rayOrigin ,
vec3 rayDirection , vec3 oneOverEllipsoidRadiiSquared)

{ // . . . }

void main ()
{

vec3 rayDirection = normal ize (worldPosition − og_cameraEye) ;
Intersection i = RayIntersectEllipsoid (og_cameraEye ,

rayDirection , u_globeOneOverRadiiSquared) ;
fragmentColor = vec3 (i . Intersects , ! i . Intersects , 0 . 0) ;

}

Listing 4.16. Base GLSL fragment shader for ray casting.

// . . .
vec3 GeodeticSurfaceNormal (vec3 positionOnEllipsoid ,

vec3 oneOverEllipsoidRadiiSquared)
{

re turn normal ize (positionOnEllipsoid

oneOverEllipsoidRadiiSquared) ;
}

void main ()
{

vec3 rayDirection = normal ize (worldPosition − og_cameraEye) ;
Intersection i = RayIntersectEllipsoid (og_cameraEye ,

rayDirection , u_globeOneOverRadiiSquared) ;
i f (i . Intersects)
{

4.3. GPU Ray Casting 153

vec3 position = og_cameraEye + (i . Time rayDirection) ;
vec3 normal = GeodeticSurfaceNormal (position ,

u_globeOneOverRadiiSquared) ;

vec3 toLight = normal ize (og_cameraLightPosition − position) ;
vec3 toEye = normal ize (og_cameraEye − position) ;
f l o a t intensity = LightIntensity (normal , toLight , toEye ,

og_diffuseSpecularAmbientShininess) ;

fragmentColor = intensity t ex ture (og_texture0 ,
ComputeTextureCoordinates (normal)) . rgb ;

}
e l s e
{

d i s ca rd ;
}

}

Listing 4.17. Shading or discarding a fragment based on a ray cast.

f l o a t ComputeWorldPositionDepth (vec3 position)
{

vec4 v = og_modelViewPerspectiveMatrix vec4 (position , 1) ;
v . z /= v . w ;
v . z = (v . z + 1 . 0) 0 . 5 ;
r e turn v . z ;

}

Listing 4.18. Computing depth for a world-space position.

The remaining shortcoming, which may not be obvious until other ob-
jects are rendered in the scene, is that incorrect depth values are written.
When an intersection occurs, the box’s depth is written instead of the ellip-
soid’s depth. This can be corrected by computing the ellipsoid’s depth, as
shown in Listing 4.18, and writing it to gl FragDepth. Depth is computed
by transforming the world-space positions of the intersection into clip coor-
dinates, then transforming this z-value into normalized device coordinates
and, finally, into window coordinates. The final result of GPU ray casting,
with shading and correct depth, is shown in Figure 4.17(c).

Since this algorithm doesn’t have any overdraw, all the red pixels in Fig-
ure 4.17(b) are wasted fragment shading. A tessellated ellipsoid rendered
with back-face culling does not have wasted fragments. On most GPUs, this
is not as bad as it seems since the dynamic branch will avoid the shading
computations [135, 144, 168], including the expensive inverse trigonometry
for texture-coordinate generation. Furthermore, since the branches are co-
herent, that is, adjacent fragments in screen space are likely to take the
same branch, except around the ellipsoid’s silhouette, the GPU’s paral-
lelism is used well [168].

154 4. Globe Rendering

To reduce the number of rays that miss the ellipsoid, a viewport-aligned
convex polygon bounding the ellipsoid from the viewer’s perspective can be
used instead of a bounding box [30]. The number of points in the bounding
polygon determine how tight the fit is and, thus, how many rays miss the
ellipsoid. This creates a trade-off between vertex and fragment processing.

GPU ray casting an ellipsoid fits seamlessly into the rasterization
pipeline, making it an attractive alternative to rendering a tessellated ap-
proximation. In the general case, GPU ray casting, and full ray tracing in
particular, is difficult. Not all objects have an efficient ray intersection test
like an ellipsoid, and large scenes require hierarchical spatial data structures
for quickly finding which objects a ray may intersect. These types of linked
data structures are difficult to implement on today’s GPUs, especially for
dynamic scenes. Furthermore, in ray tracing, the number of rays quickly
explodes with effects like soft shadows and antialiasing. Nonetheless, GPU
ray tracing is a promising, active area of research [134,178].

4.4 Resources

A detailed description of computing a polygonal approximation to a sphere
using subdivision surfaces, aimed towards introductory graphics students,
is provided by Angel [7]. The book is an excellent introduction to computer
graphics in general. A survey of subdivision-surface algorithms is presented
in Real-Time Rendering [3]. The book itself is an indispensable survey of
real-time rendering. See “The Orange Book” for more information on using
multitexturing in fragment shaders to render the Earth [147]. The book is
generally useful as it thoroughly covers GLSL and provides a wide range
of example shaders.

An ellipsoid tessellation based on the honeycomb [39], a figure derived
from a soccer ball, may prove advantageous over subdividing platonic solids,
which leads to a nonuniform tessellation. Another alternative to the tes-
sellation algorithms discussed in this chapter is the HEALPix [65].

A series on procedurally generating 3D planets covers many relevant
topics, including cube-map tessellation, level of detail, and shading [182].
An experimental globe-tessellation algorithm for NASA World Wind is
described by Miller and Gaskins [116].

The entire field of real-time ray tracing is discussed by Wald [178], in-
cluding GPU approaches. A high-level discussion on ray tracing virtual
globes, with a focus on improving visual quality, is presented by Chris-
ten [26].

12
Massive-Terrain

Rendering

Virtual globes visualize massive quantities of terrain and imagery. Imagine
a single rectangular image that covers the entire world with a sufficient
resolution such that each square meter is represented by a pixel. The
circumference of Earth at the equator and around the poles is roughly
40 million meters, so such an image would contain almost a quadrillion
(1 × 1015) pixels. If each pixel is a 24-bit color, it would require over
2 million gigabytes of storage—approximately 2 petabytes! Lossy com-
pression reduces this substantially, but nowhere near enough to fit into
local storage, never mind on main or GPU memory, on today’s or tomor-
row’s computers. Consider that popular virtual globe applications offer
imagery at resolution higher than one meter per pixel in some areas of
the globe, and it quickly becomes obvious that such a näıve approach is
unworkable.

Terrain and imagery datasets of this size must be managed with spe-
cialized techniques, which are an active area of research. The basic idea, of
course, is to use a limited storage and processing budget where it provides
the most benefit. As a simple example, many applications do not need
detailed imagery for the approximately 70% of Earth covered by oceans;
it makes little sense to provide one-meter resolution imagery there. So
our terrain- and imagery-rendering technique must be able to cope with
data with varying levels of detail in different areas. In addition, when
high-resolution data are available for a wide area, more triangles should be
used to render nearby features and sharp peaks, and more texels should
be used where they map to more pixels on the screen. This basic goal has
been pursued from a number of angles over the years. With the explosive
growth in GPU performance in recent years, the emphasis has shifted from

365

366 12. Massive-Terrain Rendering

minimizing the number of triangles drawn, usually by doing substantial
computations on the CPU, to maximizing the GPU’s triangle throughout.

We consider the problem of rendering planet-sized terrains with the
following characteristics:

• They consist of far too many triangles to render with just the brute-
force approaches introduced in Chapter 11.

• They are much larger than available system memory.

The first characteristic motivates the use of terrain LOD. We are most
concerned with using LOD techniques to reduce the complexity of the ge-
ometry being rendered; other LOD techniques include reducing shading
costs. In addition, we use culling techniques to eliminate triangles in parts
of the terrain that are not visible.

The second characteristic motivates the use of out-of-core rendering
algorithms. In out-of-core rendering, only a small subset of a dataset is
kept in system memory. The rest resides in secondary storage, such as a
local hard disk or on a network server. Based on view parameters, new
portions of the dataset are brought into system memory, and old portions
are removed, ideally without stuttering rendering.

Beautifully rendering immense terrain and imagery datasets using proven
algorithms is pretty easy if you’re a natural at spatial reasoning, have never
made an off-by-one coding error, and scoff at those who consider themselves
“big picture” people because you yourself live for the details. For the rest
of us, terrain and imagery rendering takes some patience and attention
to detail. It is immensely rewarding, though, combining diverse areas of
computer science and computer graphics to bring a world to life on your
computer screen.

Presenting all of the current research in terrain rendering could fill sev-
eral books. Instead, this chapter presents a high-level overview of the most
important concepts, techniques, and strategies for rendering massive ter-
rains, with an emphasis on pointing you toward useful resources from which
you can learn more about any given area.

In Chapters 13 and 14, we dive into two specific terrain algorithms:
geometry clipmapping and chunked LOD. These two algorithms, which take
quite different approaches to rendering massive terrains, serve to illustrate
many of the concepts in this chapter.

We hope that you will come away from these chapters with lots of
ideas for how massive-terrain rendering can be implemented in your specific
application. We also hope that you will acquire a solid foundation for
understanding and evaluating the latest terrain-rendering research in the
years to come.

12.1. Level of Detail 367

12.1 Level of Detail

Terrain LOD is typically managed using algorithms that are tuned to the
unique characteristics of terrain. This is especially true when the terrain is
represented as a height map; the regular structure allows techniques that
are not applicable to arbitrary models. Even so, it is helpful to consider
terrain LOD among the larger discipline of LOD algorithms.

LOD algorithms reduce an object’s complexity when it contributes less
to the scene. For example, an object in the distance may be rendered with
less geometry and lower resolution textures than the same object if it were
close to the viewer. Figure 12.1 shows the same view of Yosemite Valley,
El Capitan, and Half Dome at different geometric levels of detail.

LOD algorithms consist of three major parts [3]:

• Generation creates different versions of a model. A simpler model
usually uses fewer triangles to approximate the shape of the origi-
nal model. Simpler models can also be rendered with less-complex
shaders, smaller textures, fewer passes, etc.

• Selection chooses the version of the model to render based on some
criteria, such as distance to the object, its bounding volume’s esti-
mated pixel size, or estimated number of nonoccluded pixels.

• Switching changes from one version of a model to another. A primary
goal is to avoid popping : a noticeable, abrupt switch from one LOD
to another.

(a) (b)

Figure 12.1. The same view of Yosemite Valley, El Capitan, and Half Dome at
(a) low detail and (b) high detail. The differences are most noticeable in the
shapes of the peaks in the distance. Image USDA Farm Service Agency, Image
(C) 2010 DigitalGlobe. (Figures taken using Google Earth.)

368 12. Massive-Terrain Rendering

Furthermore, we can group LOD algorithms into three broad categories:
discrete, continuous, and hierarchical.

12.1.1 Discrete Level of Detail

Discrete LOD is perhaps the simplest LOD approach. Several independent
versions of a model with different levels of detail are created. The models
may be created manually by an artist or automatically by a polygonal
simplification algorithm such as vertex clustering [146].

Applied to terrain, discrete LOD would imply that the entire terrain
dataset has several discrete levels of detail and that one of them is selected
for rendering at each frame. This is unsuitable for rendering terrain in
virtual globes because terrain is usually both “near” and “far” at the same
time.

The portion of terrain that is right in front of the viewer is nearby and
requires a high level of detail for accurate rendering. If this high level of
detail is used for the entire terrain, the hills in the distance will be rendered
with far too many triangles. On the other hand, if we select the LOD based
on the distant hills, the nearby terrain will have insufficient detail.

12.1.2 Continuous Level of Detail

In continuous LOD (CLOD), a model is represented in such a way that the
detail used to display it can be precisely selected. Typically, the model is
represented as a base mesh plus a sequence of transformations that make
the mesh more or less detailed as each is applied. Thus, each successive
version of the mesh differs from the previous one by only a few triangles.

At runtime, a precise level of detail for the model is created by selecting
and applying the desired mesh transformations. For example, the mesh
might be encoded as a series of edge collapses, each of which simplifies the
mesh by removing two triangles. The opposite operation, called a vertex

split , adds detail by creating two triangles. The two operations are shown
in Figure 12.2.

CLOD is appealing because it allows a mesh to be selected that has a
minimal number of triangles for a required visual fidelity given the view-
point or other simplification criteria. In days gone by, CLOD was the
best way to interactively render terrain. Many historically popular terrain-
rendering algorithms use a CLOD approach, including Lindstrom et al.’s
CLOD for height fields [102], Duchaineau et al.’s real-time optimally adapt-
ing mesh (ROAM) [41], and Hoppe’s view-dependent progressive meshes
[74]. Luebke et al. have excellent coverage of these techniques [107].

Today, however, these have largely fallen out of favor for use as runtime
rendering techniques. CLOD generally requires traversing a CLOD data

12.1. Level of Detail 369

���������	
�

��
����		����

Figure 12.2. For an edge interior to a mesh, edge collapse removes two triangles
and vertex split creates two triangles.

structure on the CPU and touching each vertex or edge in the current LOD.
On older generations of hardware, this trade-off made a lot of sense; triangle
throughput was quite low, so it was important to make every triangle count.
In addition, it was worthwhile to spend extra time refining a mesh on the
CPU in order to have the GPU process fewer triangles.

Today’s GPUs have truly impressive triangle throughput and are, in
fact, significantly faster than CPUs for many tasks. It is no longer a worth-
while trade-off to spend, for example, 50% more time on the CPU in order
to reduce the triangle count by 50%. For that reason, CLOD-based terrain-
rendering algorithms are inappropriate for use on today’s hardware.

Today, these CLOD techniques, if they’re used at all, are instead used
to preprocess terrain into view-independent blocks for use with hierarchical
LOD algorithms such as chunked LOD. These blocks are static; the CPU
does not modify them at runtime, so CPU time is minimized. The GPU
can easily handle the additional triangles that it is required to render as a
result.

A special form of CLOD is known as infinite level of detail. In an infinite
LOD scheme, we start with a surface that is defined by a mathematical
function (e.g., an implicit surface). Thus, there is no limit to the number
of triangles we can use to tessellate the surface. We saw an example of this
in Section 4.3, where the implicit surface of an ellipsoid was used to render
a pixel-perfect representation of a globe without tessellation.

Some terrain engines, such as the one in Outerra,1 use fractal algorithms
to procedurally generate fine terrain details (see Figure 12.3). This is a form
of infinite LOD. Representing an entire real-world terrain as an implicit
surface, however, is not feasible now or in the foreseeable future. For that
reason, infinite LOD has only limited applications to terrain rendering in
virtual globes.

1http://www.outerra.com

370 12. Massive-Terrain Rendering

(a) (b)

Figure 12.3. Fractal detail can turn basic terrain into a beautiful landscape.
(a) Original 76 m terrain data. (b) With fractal detail. (Images courtesy of
Brano Kemen, Outerra.)

12.1.3 Hierarchical Level of Detail

Instead of reducing triangle counts using CLOD, today’s terrain-rendering
algorithms focus on two things:

• Reducing the amount of processing by the CPU.

• Reducing the quantity of data sent over the system bus to the GPU.

The LOD algorithms that best achieve these goals generally fall into
the category of hierarchical LOD (HLOD) algorithms.

HLOD algorithms operate on chunks of triangles, sometimes called
patches or tiles, to approximate the view-dependent simplification achieved
by CLOD. It some ways, HLOD is a hybrid of discrete LOD and CLOD. The
model is partitioned and stored in a multiresolution spatial data structure,
such as an octree or quadtree (shown in Figure 12.4), with a drastically
simplified version of the model at the root of the tree. A node contains one
chunk of triangles. Each child node contains a subset of its parent, where
each subset is more detailed than its parent but is spatially smaller. The
union of all nodes at any level of the tree is a version of the full model. The
node at level 0 (i.e., the root) is the most simplified version. The union of
the nodes at maximum depth represents the model at full resolution.

If a given node has sufficient detail for the scene, it is rendered. Oth-
erwise, the node is refined, meaning that its children are considered for
rendering instead. This process continues recursively until the entire scene
is rendered at an appropriate level of detail. Erikson et al. describe the
major strategies for HLOD rendering [48].

HLOD algorithms are appropriate for modern GPUs because they help
achieve both of the reductions identified at the beginning of this section.

12.1. Level of Detail 371

�

�

�

�

(a)

����

��

�� ��

��

���� ����

���� �	�	

�
 ���

����

��

���� ����

�
�
 ����

��

		

����

��

��

(b)

Figure 12.4. In HLOD algorithms, a model is partitioned and stored in a tree.
The root contains a drastically simplified version of the model. Each child node
contains a more detailed version of a subset of its parent.

In HLOD algorithms, the CPU only needs to consider each chunk rather
than considering individual triangles, as is required in CLOD algorithms.
In this way, the amount of processing that needs to be done by the CPU
is greatly reduced.

HLOD algorithms can also reduce the quantity of data sent to the GPU
over the system bus. At first glance, this is somewhat counterintuitive.
After all, rendering with HLOD rather than CLOD generally means more
triangles in the scene for the same visual fidelity, and triangles are, of
course, data that need to be sent over the system bus.

HLOD, however, unlike CLOD, does not require that new data be sent
to the GPU every time the viewer position changes. Instead, chunks are
cached on the GPU using static vertex buffers that are applicable to a range
of views. HLOD sends a smaller number of larger updates to the GPU,
while CLOD sends a larger number of smaller updates.

Another strength of HLOD is that it integrates naturally with out-of-
core rendering (see Section 12.3). The nodes in the spatial data structure
are a convenient unit for loading data into memory, and the spatial ordering
is useful for load ordering, replacement, and prefetching. In addition, the
hierarchical organization offers an easy way to optimize culling, including
hardware occlusion queries (see Section 12.4.4).

12.1.4 Screen-Space Error

No matter the LOD algorithm we use, we must choose which of several
possible LODs to use for a given object in a given scene. Typically, the

372 12. Massive-Terrain Rendering

������

�

�

�

�

�

�	���

��

�

����������

����	�

�

Figure 12.5. The screen-space error, ρ, of an object is estimated from the distance
between the object and the viewer, the parameters of the view, and the geometric
error, ǫ, of the object.

goal is to render with the simplest LOD possible while still rendering a
scene that looks good. But how do we determine whether an LOD will
provide a scene that looks good?

A useful objective measure of quality is the number of pixels of differ-
ence, or screen-space error, that would result by rendering a lower-detail
version of an object rather than a higher-detail version. Computing this
precisely is usually challenging, but it can be estimated effectively. By es-
timating it conservatively, we can arrive at a guaranteed error bound; that
is, we can be sure that the screen-space error introduced by using a lower-
detail version of a model is less than or equal to a computed value [107].

In Figure 12.5, we are considering the LOD to use for an object a
distance d from the viewer in the view direction, where the view frustum
has a width of w. In addition, the display has a resolution of x pixels and
a field of view angle θ. A simplified version of the object has a geometric
error ǫ; that is, each vertex in the full-detail object diverges from the closest
corresponding point on the reduced-detail model by no more than ǫ units.
What is the screen-space error, ρ, that would result if we were to render
this simplified version of the object?

From the figure, we can see that ρ and ǫ are proportional and can solve
for ρ:

ǫ

w
=

ρ

x
,

ρ =
ǫx

w
.

12.1. Level of Detail 373

The view-frustum width, w, at distance d is easily determined and
substituted into our equation for ρ:

w = 2d tan
θ

2
,

ρ =
ǫx

2d tan θ

2

. (12.1)

'

&

$

%

Technically, this equation is only accurate for objects in the center of
the viewport. For an object at the sides, it slightly underestimates the
true screen-space error. This is generally considered acceptable, however,
because other quantities are chosen conservatively. For example, the
distance from the viewer to the object is actually larger than d when the
object is not in the center of the viewport. In addition, the equation
assumes that the greatest geometric error occurs at the point on the
object that is closest to the viewer.

Kevin Says

For a bounding sphere centered at c and with radius r, the distance d

to the closest point of the sphere in the direction of the view, v, is given by

d = (c− viewer) · v − r.

By comparing the computed screen-space error for an LOD against
the desired maximum screen-space error, we can determine if the LOD is
accurate enough for our needs. If not, we refine.

12.1.5 Artifacts

While the LOD techniques used to render terrain are quite varied, there’s
a surprising amount of commonality in the artifacts that show up in the
process.

Cracking. Cracking is an artifact that occurs where two different levels of
detail meet. As shown in Figure 12.6, cracking occurs because a vertex in a
higher-detail region does not lie on the corresponding edge of a lower-detail
region. The resulting mesh is not watertight.

The most straightforward solution to cracking is to drop vertical skirts
from the outside edges of each LOD. The major problem with skirts is that
they introduce short vertical cliffs in the terrain surface that lead to texture
stretching. In addition, care must be taken in computing the normals of
the skirt vertices so that they aren’t visible as mysterious dark or light

374 12. Massive-Terrain Rendering

Figure 12.6. Cracking occurs when an edge shared by two adjacent LODs is
divided by an additional vertex in one LOD but not the other.

lines around an LOD region. Chunked LOD uses skirts to avoid cracking,
as will be discussed in Section 14.3.

Another possibility is to introduce extra vertices around the perimeter
of the lower LOD region to match the adjacent higher LODs. This is
effective when only a small number of different LODs are available or when
there are reasonable bounds on the different LODs that are allowed to
be adjacent to each other. In the worst case, the coarsest LOD would
require an incredible number of vertices at its perimeter to account for the
possibility that it is surrounded by regions of the finest LOD. Even in the
best cases, however, this approach requires extra vertices in coarse LODs.

A similar approach is to force the heights of the vertices in the finer LOD
to lie on the edges of the coarser LOD. The geometry-clipmapping terrain
LOD algorithm (see Chapter 13) uses this technique effectively. A danger,
however, is that this technique leads to a new problem: T-junctions.

T-junctions. T-junctions are similar to cracking, but more insidious. Where-
as cracking occurs when a vertex in a higher-detail region does not lie on
the corresponding edge of a lower-detail region, T-junctions occur because
the high-detail vertex does lie on the low-detail edge, forming a T shape.
Small differences in floating-point rounding during rasterization of the ad-
jacent triangles lead to very tiny pinholes in the terrain surface. These
pinholes are distracting because the background is visible through them.

Ideally, these T-junctions are eliminated by subdividing the triangle
in the coarser mesh so that it, too, has a vertex at the same location as
the vertex in the finer mesh. If the T-junctions were introduced in the
first place in an attempt to eliminate cracking, however, this is a less than
satisfactory solution.

12.1. Level of Detail 375

��������	�

����

Figure 12.7. A side view of an exaggerated T-junction between two adjacent
LODs. Skirts can hide T-junctions if they are angled slightly outward.

Another possibility is to fill the T-junctions with degenerate triangles.
Even though these degenerate triangles mathematically have no area and
thus should produce no fragments, the same rounding errors that cause the
tiny T-junction holes to appear in the first place also cause a few fragments
to be produced from the degenerate triangles, and those fragments fill the
holes.

A final possibility, which is effective when cracks are filled with skirts,
is to make the skirts of adjacent LODs overlap slightly, as shown in Fig-
ure 12.7.

Popping. As the viewer moves, the level of detail of various objects in the
scene is adjusted. When the LOD of a given object is abruptly changed
from a coarser one to a finer one, or vice versa, the user may notice a “pop”
as vertices and edges change position.

This may be acceptable. To a large extent, virtual globe users tend to
be more accepting of popping artifacts than, say, people playing a game.
A virtual globe is like a web browser. Users instinctively understand that
a web browser combines a whole lot of content loaded from remote servers.
No one complains when a web browser shows the text of a page first and
then “pops” in the images once they have been downloaded from the web
server. This is much better than the alternative: showing nothing until all
of the content is available.

Similarly, virtual globe users are not surprised that data are often
streamed incrementally from a remote server and, therefore, are also not
surprised when it suddenly pops into existence. As virtual globe devel-
opers, we can take advantage of this user expectation even in situations
where it is not strictly necessary, such as in the transition between two
LODs, both cached on the GPU.

In many cases, however, popping can be prevented.
One way to prevent popping is to follow what Bloom refers to as the

“mantra of LOD”: a level of detail should only switch when that switch

376 12. Massive-Terrain Rendering

will be imperceptible to the user [18]. Depending on the specific LOD
algorithm in use and the capabilities of the hardware, this may or may not
be a reasonable goal.

Another possibility is to blend between different levels of detail instead
of switching them abruptly. The specifics of how this blending is done
are tied closely to the terrain-rendering algorithm, so we cover two specific
examples in Sections 13.4 and 14.3.

12.2 Preprocessing

Rendering a planet-sized terrain dataset at interactive frame rates requires
that the terrain dataset be preprocessed. As much as we wish it were not,
this is an inescapable fact. Whatever format is used to store the terrain
data in secondary storage, such as a disk or network server, must allow
lower-detail versions of the terrain dataset to be obtained efficiently.

As described in Chapter 11, terrain data in virtual globes are most
commonly represented as a height map. Consider a height map with 1
trillion posts covering the entire Earth. This would give us approximately
40 m between posts at the equator, which is relatively modest by virtual
globe standards. If this height map is stored as a giant image, it will have
1 million texels on each side.

Now consider a view of Earth from orbit such that the entire Earth is
visible. How can we render such a scene? It’s unnecessary, even if it were
possible, to render all of the half a trillion visible posts. After all, half a
trillion posts is orders of magnitude more posts than there are pixels on
even a high-resolution display.

Terrain-rendering algorithms strive to be output sensitive. That is, the
runtime should be dependent on the number of pixels shaded, not on the
size or complexity of the dataset.

Perhaps we’d like to just fill a 1,024 × 1,024 texture with the most
relevant posts and render it using the vertex-shader displacement-mapping
technique described in Section 11.2.2. How do we obtain such a texture
from our giant height map? Figure 12.8 illustrates what is required.

First we would read one post. Then we would seek past about 1,000
posts before reading another post. This process would repeat until we
had scanned through nearly the entire file. Seeking through a file of this
size and reading just a couple of bytes at a time would take a substantial
amount of time, even from local storage.

Worse, reading just one post out of every thousand posts would result
in aliasing artifacts. A much better approach would be to find the average
or maximum of the 1,000 × 1,000 “skipped” post heights to produce one

